
J Stat Phys (2010) 138: 291–304
DOI 10.1007/s10955-009-9886-y

Stabilization of Solutions to a FitzHugh-Nagumo Type
System

Danielle Hilhorst · Piotr Rybka

Received: 30 June 2009 / Accepted: 18 November 2009 / Published online: 2 December 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider a bistable reaction-diffusion system arising in the theory of phase
transitions; it appears in several physical contexts such as thin magnetic films and the mi-
crophase separation in diblock copolymer melts. Mathematically it takes the form of an
Allen-Cahn equation coupled to an elliptic equation. This system possesses a Lyapunov
functional which represents the Gibbs free energy of the phase separation problem. We study
the large time behavior of the solution orbits, and use the fact that the problem has a gradient
structure to prove their stabilization by means of a version of Łojasiewicz inequality.

Keywords Gradient flow · Łojasiewicz inequality · Stabilization of solutions ·
FitzHugh-Nagumo system · Diblock copolymer · Infinite dimensional dynamical systems

1 Introduction

In this article we consider the following reaction-diffusion system of bistable type, where an
Allen-Cahn equation is coupled to an elliptic equation

ut = Du�u + f (x,u) − v, in � × (0,∞),
(1.1)

0 = Dv�v − av + γ u − b, in � × (0,∞),

together with homogeneous Neumann boundary data for u and v and an initial condition
for u. Here, a, b, γ , Du and Dv are positive constants, and � is an open, bounded subset
of R

n, n ≥ 1, with smooth boundary.
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When f (x,u) = f (u), with for instance f (u) = u − u3, system (1.1) may be regarded
as a special case of the FitzHugh-Nagumo reaction-diffusion system

ut = Du�u + f (u) − v, in � × (0,∞),
(1.2)

τvt = Dv�v − av + γ u − b, in � × (0,∞),

with τ = 0.
The FitzHugh-Nagumo system arises in neuro-physiology. It is a simplified form of the

Hodgkin-Huxley system which describes electronic and ionic events occurring during the
transmission of an impulse along an axon, namely the filament carrying signals from the
nerve cell body to other parts of the organism. Its formulation is based upon the assumption
that an axon behaves like a cylindrical electrical cable with conducting core and partially
insulation sheath [8, 16].

Problem (1.1) or closely related systems also appear in other physical contexts such as
thin magnetic films [9] and the microphase separation in diblock copolymer melts. Let us
comment on the last one. A diblock copolymer is a linear-chain molecule of two subchains
jointed covalently to each other. Each subchain is made of different monomers. Below a criti-
cal temperature the subchains begin to segregate due to repulsion between unlike monomers.

The above problems are gradient flows and involve a free energy functional of nonlocal
type [17, 18] and [21]. The Lyapunov functional E , which is given by

E (u) =
∫

�

(
Du

2
|∇u(x)|2 + F(x,u(x))

)
dx + 1

2

∫
�

|∇v(x)|2 dx, (1.3)

where F(x,u) = −
∫ u

0
f (x, s) ds, may represent the Gibbs free energy of a phase separation

problem. The critical points of this variational problem can be regarded as the thermody-
namic equilibrium states of the phase separation phenomenon.

In this paper, in Sect. 3, we study the large time behavior of the solutions of Prob-
lem (1.1). More precisely we show that any solution of (1.1) converges to a steady state. For
this purpose we use the Łojasiewicz inequality (see [3, 13–15, 20] and references therein).
This argument depends, in an essential way, on the analyticity of the nonlinear term f ,
which is here a polynomial in u of the third degree.

On the way, in Sect. 2, we prove again an existence result. In order to avoid unnecessary
technical difficulties, we assume that the initial datum u0 has already been smoothed out by
the flow. Our tool is the standard theory of analytic semigroups, as exposed in Henry’s book
[12]. However, the key to obtain a global in time result is to perform a priori estimates on
solutions. This clearly appears in the proof of Lemma 2.1 below.

The reason for using the argument based on analyticity stems from the fact that we do
not fully know the structure of the steady states of (1.1). However, we know that in similar
systems in � = (0,1) the number of equilibria is finite (see e.g. [10]), so that convergence
to equilibria is a well-know property. Here, we concentrate on the case n ≥ 2. We also note
(cf. [3]) that if a solution converges to an isolated steady state, then we automatically obtain
an exponential decay rate.

Our paper is one of the series of articles devoted to studies of stabilization of gradient-like
systems whose main tool is Łojasiewicz inequality. The first was the paper by Łojasiewicz
himself [13, 15], who showed that any bounded solution to gradient systems in R

n (which is
an ODE system), converges to a stationary point. This idea was subsequently developed for
infinite dimensions gradient systems by L. Simon, who showed an appropriate version of the
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inequality and applied it to prove stabilization in the Allen-Cahn system and in general phase
field models, see [20]. Another fifteen year were needed for the appearance of a version
of Łojasiewicz inequality which was suitable for an application to Cahn-Hilliard equation,
which resulted in another stabilization result, see [19]. Here, we mention only papers which
deal with problems related to phase transitions, thus we leave out a huge part devoted to
application of Łojasiewicz inequality to evolution problems.

In all the papers mentioned above the nonlinear term was analytic. It turns out that this
assumption may be significantly relaxed. The authors of [6] use a version of the inequality
for a C1 functional, which is not analytic and prove stabilization in a non-local phase-field
system; other phase field models are studied in [7] and [4]. Interestingly, it is possible to
study with the same tools systems with logarithmic singularities, see [1] and the Ginzburg-
Landau equations of superconductivity [5].

2 Existence

System (1.1) may be re-written as

ut = Du�u + f (x,u) − K(γu − b), in � × (0, T ),

∂u

∂n
= 0, on ∂� × (0, T ), (2.1)

u(0, x) = u0(x), x ∈ �,

where the nonlocal operator K is defined as follows. If w given, then v = −Kw is the
solution to

−Dv�v + av = w, in �, (2.2)

∂v

∂n
= 0, on ∂�. (2.3)

In this section we shall establish a global in time existence result for smooth initial data.
This is achieved in two steps. First, we show local existence. This fact combined with a
priori estimates implied by the gradient structure of (2.1) and Lemma 2.1 below yields the
global in time existence.

We shall use the language and methods of the semigroup theory. We shall work in the
Hilbert space X2 = L2(�) as well as in the Banach spaces Xp = Lp(�), p ∈ (2,∞). Let us
denote by �N the Laplace operator with homogeneous Neumann boundary condition. The
operator Du(−�N + 1) will play a major role; however for the sake of a compact notation
we will denote it by Ap , where p refers to Xp . We remark that the domain of Ap is given by

D(Ap) =
{
u ∈ W 2,p(�) : ∂u

∂n
= 0

}
.

The operators Ap are sectorial (see [12, Sect. 1.4] and [12, Sect. 1.6]). This fact is particu-
larly easy when p = 2, since then A2 is self-adjoint and positive. Thus, the spaces Xα

p are
well-defined as the domains of the operators Aα

p (cf. [12, Chap. 1]). The norm in Xα
p is given

by ‖u‖α,p = ‖Aα
pu‖Lp . In the case α = 1/2 we denote by A

1/2
p the square root of Ap , (cf. [12,

Chap. 1]). In fact we can identify X
1/2
p with W 1,p(�). Indeed, this is particularly easy when
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p = 2, if u ∈ D(Du(−�N + 1)); then by the definition of the norm and self-adjointness of
�N we have

Du
−1‖u‖2

1/2,2 = ‖(−�N + 1)1/2u‖2
L2 = ((−�N + 1)u,u)L2 .

An integration by parts yields,

Du
−1‖u‖2

1/2,2 =
∫

�

(|∇u|2 + u2) dx = ‖u‖2
W1,2 . (2.4)

As a result we conclude that the norms ‖ · ‖1/2,2 and ‖ · ‖W1,2 are equivalent, hence we
may identify W 1,2(�) with X

1/2
2 . For a general result, when p ∈ (1,∞), we note that

Xα
p is the complex interpolation space [Lp(�), D(Ap)]α , where D(Ap) is understood with

the graph norm (see [22, Theorem 1.15.3]), moreover by [22, Theorem 4.3.3] we have
[Lp(�), D(Ap)]1/2 = W 1,p(�).

Now, we introduce a Lyapunov functional coinciding with (1.3) up to a constant, which
plays a major role in the study of (1.1). We set

E(u) =
∫

�

(
Du

2
|∇u(x)|2 + F(x,u(x))

)
dx + 1

2
(γKu,u)L2 − (Kb,u)L2 + C, (2.5)

where F(x,u) = F0 − ∫ u

0 f (x, s) ds, F0 is a suitable positive number, and C is chosen to
ensure that

1

2
(γKu,u)L2 − (Kb,u)L2 + C ≥ 0. (2.6)

More precisely we assume that

f (x,u) = −a3(x)u3 + a2(x)u2 + a1(x)u,

ai, i = 1,2,3 are smooth with all their derivatives bounded in �, (2.7)

a3(x) ≥ δ > 0 all x ∈ �.

Hence we may choose F0 so that F(x,u) is positive for all (x,u) ∈ � × R.
In our example f (u) = u−u3, i.e. F(u) = 1

4 (1−u2)2. In view of (2.6) and the definition
of F we can choose F0 large enough so that

E(u) ≥ Du

2
‖∇u‖2

L2 + d‖u‖4
L4 ,

for some positive constant d .
Moreover, we can check that

ut = −E′(u), (2.8)

where E′ is the variational derivative of E or more precisely the derivative in the L2 norm,
i.e.

E(u + h) − E(u) = (E′(u),h)L2 + o(h),

where h ∈ W 1,2(�) ∩ L4(�) and |o(h)|/‖h‖L2 → 0, when ‖h‖L2 → 0. Thus,

dE

dt
(u) =

∫
�

E′(u) · ut dx = −‖Du�u + f (·, u) − K(γu − b)‖2
L2 . (2.9)
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After these preliminary remarks, we state the first existence result. Our goal is to show global
existence of smooth solutions, i.e. belonging to

⋂∞
k=1 D(Ak

p), for some p > n, for all t > 0.
We begin with a local in time result.

Proposition 2.1 Let us suppose that � is an open, bounded subset of R
n with a smooth

boundary, n ≥ 1 and p > n, N > 0 are arbitrary. Moreover, f : � × R → R is smooth and
satisfies (2.7) and F(x,u) defined above is positive. We also assume that the initial function
u0 belongs to D(AN

p ). Then, there exist a positive number T and a unique local in time
solution to (2.1), such that

u ∈ C((0, T ];W 2N+2,p(�)) ∩ C([0, T ];W 2N,p(�)), ut ∈ C((0, T );W 2N,p(�)),

more precisely, we have that

u ∈ C((0, T ]; D(AN+1
p )) ∩ C([0, T ]; D(AN

p )).

Proof We will apply the Banach contraction principle. We set X
2N,p

T = C([0, T ]; D(AN
p ))

with the norm

‖u‖
X

2N,p
T

= sup
t∈[0,T ]

‖AN
p (u(t))‖Lp .

Using the fact that Ap is sectorial we rewrite (2.1) in integral form by means of the variation
of constant formula (see [12, Chap. 3])

u(t) = e−Aptu0 +
∫ t

0
e−Ap(t−s)(Duu + f (·, u(s)) − K(γu(s) − b)) ds. (2.10)

If u ∈ X
2N,p

T is given, we denote the right-hand-side of (2.10) by 	u, and we look for a fixed
point of 	.

Let us take a closed ball BR ⊂ X
2N,p

T centered at e−Aptu0, i.e. BR = B̄(e−Aptu0,R),
R > 0. We shall show that for sufficiently small T > 0: (a) 	(BR) ⊂ BR and (b) 	 is a strict
contraction.

To that purpose we need the following observation, which results from the elliptic regu-
larity theory and the embedding theorems for p > n,

‖Dju‖L∞ ≤ C‖AN
p u‖Lp (2.11)

for j < 2N .
We first show (a), i.e. that 	(BR) ⊂ BR . Suppose that u ∈ BR ⊂ X

2N,p

T , then �N(f (u) +
K(γu−b)) ∈ Lp(�). Also using that ‖Aα

pe−Apt‖Lp ≤ Cαt
−αe−λt , where λ > 0 is the small-

est eigenvalue of Ap and α > 0 (cf. [12, Theorem 1.4.3]), we deduce

‖	u − e−Aptu0‖X
2N,p
T

= sup
t∈[0,T ]

‖AN
p (	u − e−Aptu0)‖Lp

≤ sup
t∈[0,T ]

∫ t

0
Ce−λ(t−s)‖AN

p (Duu + f (·, u(s)) − K(γu(s) − b))‖Lp ds.

It is now easy to check that

‖AN
p f (·, u)‖Lp ≤ C(N,a1, a2, a3)‖AN

p u‖3
Lp and ‖AN

p K(γ u − b)‖Lp ≤ C‖AN−1
p u‖Lp .
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Combining these with ‖u‖
X

2N,p
T

≤ ‖u − e−Aptu0‖X
2N,p
T

+ ‖e−Aptu0‖X
2N,p
T

we conclude that

for u in the ball BR we have

‖	u − e−Aptu0‖X
2N,p
T

≤ sup
t∈[0,T ]

∫ t

0
Ce−λ(t−s)(C(N,a1, a2, a3)(R + ‖u0‖X

2N,p
T

)3

+ C(R + ‖u0‖X
2N,p
T

)) ds. (2.12)

Thus, we conclude that for sufficiently small T , the operator 	 maps BR into itself.
(b) After performing similar calculations as those which lead to (2.12) we can see that if

u,v ∈ BR , then

‖f (·, u) − f (·, v)‖Lp ≤ C(a1, a2, a3)(‖u‖2
L∞ + ‖v‖2

L∞)‖u − v‖Lp

≤ C(R2,‖u0‖X
2N,p
T

)‖u − v‖
X

2N,p
T

,

where we also used that X
2N,p

T ⊂ L∞(QT ). This shows that the mapping

X
2N,p

T � u → Duu + f (·, u) − K(γu − b) ∈ Lp(�)

is locally Lipschitz continuous. Hence, by a choice of a sufficiently small T > 0 we come
to the conclusion that 	 is a strict contraction. This leads to the existence of a unique fixed
point. It is now easy to check by using the methods of [12, Sect. 3.2] that the fixed point u

not only belongs to X
2N,p

T , but also to

u ∈ C((0, T ];X2N+2,p

T ), ut ∈ C((0, T ];X2N,p

T ). �

In order to prove the global in time existence we need a priori estimates for solutions
of (2.10) in X

2N,p

T which are independent of time. One estimate is easily available. Indeed,
it follows from Proposition 2.1 and (2.9) that E(u(t)) ≤ E(u0). By the choice of F0 this im-
plies that ‖u(t)‖L4 ≤ C(E(u0))

1/4 for t > 0. Another bound is a version of [2, Lemma 3.3].

Lemma 2.1 Let u ∈ X
2N,p

T , with p > n be the unique solution of (2.1) on [0, T ], then for
any p ∈ [2,∞) we have the bound,

‖u(t)‖Lp ≤ C(p)(1 + (E(u0))
r/4), for t ∈ [0, τ ], τ = min{1, T }, (2.13)

where r = r(p,n) is defined below in (2.17).

Proof We multiply (1.1)1 by tγ |u|αu, where α, γ are to be chosen later, and integrate by
parts. By Young inequality we arrive at

1

α + 2

d

dt

∫
�

tγ |u|α+2 dx ≤ γ

α + 2
tγ−1

∫
�

|u|α+2 dx − tγ
∫

�

a3|u|α+4 dx

+ tγ
∫

�

(|a2||u|α+3 + |a1||u|α+2) dx + tγ
∫

�

|v||u|α+1 dx

≤ γ

α + 2
tγ−1

∫
�

|u|α+2 dx − 1

2
tγ

∫
�

a3|u|α+4 dx + C(a1, a2)

+ Cεt
γ

∫
�

|v|(α+4)/3 + εtγ
∫

�

|u|α+4 dx,
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where v = −K(γu − b). We note that tγ−1|u|2+α = (tγ |u|(2+α)
γ

γ−1 )
γ−1
γ . If we now take

γ = α
2 + 2, then we can see that

tγ−1|u|2+α ≤ εtγ |u|α+4 + C(ε,α).

Thus,

1

α + 2

d

dt

∫
�

tγ |u|α+2 dx ≤ C(ε,α, a1, a2)

(
1 + tγ

∫
�

|v|(α+4)/3

)
. (2.14)

We now start our iterative process, by setting q0 = 4 and noticing that u ∈ L∞(0, T ;Lq0(�)).
Assuming that u ∈ L∞(0, T ;Lqk−1(�)) we will deduce that u ∈ L∞(0, T ;Lqk (�)) for prop-
erly defined qk .

If we take into account that v is defined as a solution to (2.2), with data u in Lqk−1 , then
by the standard elliptic regularity theory and the embedding W 2,q ⊂ Lnq/(n−2q), we conclude
that

‖v‖
L

nqk−1/(n−2qk−1) ≤ C‖v‖
W

2,qk−1 ≤ C‖u‖L
qk−1 . (2.15)

Keeping this in mind we take α in (2.14) satisfying the relation α+4
3 = nqk−1

n−2qk−1
and we set

qk := α + 2. Then we obtain the following recurrent relation

qk = 3
nqk−1

n − 2qk−1
− 2.

We remark that there exists k0 such that n ≥ 2qk0 , but n < 2qk0+1. Indeed let us consider
three cases, according to the value of the space dimension n. If n < 8, then automatically
n < 2q0 = 8. If n = 8, then we may take for q1 any positive number, in particular we can
require that 2q1 > n = 8. Finally, for n > 9 and q0 ≥ 4 we remark that the sequence {qk}∞

k=0
is strictly increasing as long as qk−1 < n/2.

Thus, the integration of (2.14) over the interval [0, t], for any t ≤ τ , and the definition of
qk imply

1

qk

‖u(t)‖qk

Lqk ≤ C(ε, qk, a1, a2)

(
1 +

∫ t

0
‖v(s)‖nqk−1/(n−2qk−1)

L
nqk−1/(n−2qk−1) ds

)
. (2.16)

If we combine (2.15) with (2.16) and the definition of qk , then we see

‖u(t)‖Lqk ≤ C(ε, qk, a1, a2)
(
1 + sup

s∈[0,τ ]
‖u(s)‖

1
3 (1+ 2

qk
)

L
qk−1 ds

)
, for 0 ≤ t ≤ τ.

Thus, for p ∈ [qk−1, qk), with k ≤ k0 we iterate this estimate, thus we come to

‖u(t)‖Lqk ≤ C(k, qk, a1, a2)(1 + max
t∈[0,τ ]

‖u(t)‖r

L4) ≤ C(k, qk)(1 + E(u0)
r/4),

for

r = r(p,n) = 3−k

k∏
l=1

(
1 + 2

ql

)
, (2.17)

where p ∈ [qk−1, qk).
If p > qk0 , then ‖v‖L∞ ≤ ‖u‖

L
qk0 and integrating (2.14) over [0, τ ] with r =

3−k0
∏k0

l=1(1 + 2
ql

) yields the desired estimate. �
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Remark 2.1 Once that we have established (2.13) on [0, τ ] we can extend it to [0, T ] for
T ≥ 1. We proceed iteratively on intervals [kτ, (k +1)τ ]. On each of those intervals we may
take u((k + 1)τ ) in place of u0 in formula (2.13). Thus Lemma 2.1 implies

‖u(t)‖Lp ≤ C(p)(1 + (E(u(kτ)))r/4) ≤ C(p)(1 + (E(u0))
r/4)

for t ∈ [kτ, (k + 1)τ ], where k is any positive integer. In the above estimate we also used the
fact that E is a Lyapunov functional.

Now, we can iteratively establish the bounds we need.

Lemma 2.2 Let us fix p > n and a natural number N , T > 0 and let us suppose that
u ∈ X

2N,p

T is a unique solution of (2.1) constructed in Proposition 2.1, then ‖u(t)‖
X

2N,p
T

≤
C(p,n,N,E(u0),‖u0‖W2N,p ) for t ≤ T .

Proof We may apply the operator Aη
p , η ∈ ( 1

2 ,1), to both sides of (2.10) and calculate the
Lp norm. This leads us to

‖u(t)‖W1,p ≤ C‖u(t)‖η,p ≤ Ce−λt‖u0‖η,p +
∫ t

0
Cη,p

e−λ(t−s)

(t − s)η
‖f (·, u) + K(γu − b)‖Lp ds.

By the Remark 2.1 above, the nonlinear term is bounded by the data,

‖f (·, u) + K(γu − b)‖Lp ≤ C(1 + ‖u0‖r

L4) ≤ C(1 + Er/4(u0)),

where we have also exploited the choice of F0 in the definition of E.
Thus, supt∈[0,T ] ‖u(t)‖W1,p ≤ C0(1 + Er/4(u0)) independently of T . As a result, since

p > n, we conclude from the embedding theorem that,

sup
t∈[0,T ]

‖u(t)‖L∞ ≤ C1(1 + Er/4(u0))

independently of T .
In the next step, we uniformly bound ‖Apu‖Lp . Namely, we have

‖u(t)‖W2,p ≤ C‖Apu(t)‖Lp

≤ Ce−λt‖u0‖1,p +
∫ t

0
C‖A1/2

p e−Ap(t−s)∇(f (·, u(s)) + K(γu(s) − b)))‖Lp ds

≤ Ce−λt‖u0‖1,p +
∫ t

0
C1/2,p

e−λ(t−s)

(t − s)η
‖∇(f (·, u(s)) + K(γu(s) − b))‖Lp ds,

where we have also used the equivalence of the standard norm in W 1,p and in X
1/2
p .

By the previous step the term ‖∇f (u)‖Lp is bounded in terms of data only and inde-
pendently of time, because we have such bounds on ‖∇u‖Lp and ‖u(t)‖L∞ . Thus, we get a
uniform bound

‖u(t)‖W2,p ≤ C1(p,E(u0),‖u0‖W2,p ) for t ∈ [0, T ].

This estimate implies by the embedding theorems that ‖∇u‖L∞ is uniformly bounded by
the data as well.
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We shall establish iteratively that

sup
t∈[0,T ]

‖AN
p u(t)‖Lp ≤ C(p,n,N,E(u0),‖u0‖WN,p ), (2.18)

which implies the desired bound due to smoothness of u0.
We have already done it for N = 1. Let us suppose that this bound holds for a number

l ≥ 1, we will show it for l + 1. For this purpose we apply the operator A
l+1/2
p to both sides

of (2.10), thus

‖Al+1/2
p u(t)‖Lp ≤ Ce−λt‖u0‖l+1/2,p

+
∫ t

0
‖A1/2

p e−Ap(t−s)Al
p(f (·, u(s)) + K(γu(s) − b))‖Lp ds.

In order to proceed we make the observation that if p > n and a ∈ C∞(�̄), then DM(au3) ∈
Lp and

‖DM(au3)‖Lp ≤ C(a,M)‖u‖3
WM,p . (2.19)

To this end we notice that DM(au3) is a sum composed of the terms DiaDjuDkuDmu,
where j +k +m ≤ M . Due to boundedness of Dia, it is sufficient to show that each of these
products belongs to Lp . By Hölder inequality we have the following bound

∫
�

|DjuDkuDmu|p dx

≤
(∫

�

|Dju|pαj dx

)1/αj
(∫

�

|Dku|pαk dx

)1/αk
(∫

�

|Dmu|pαm dx

)1/αm

,

where 1
αj

+ 1
αk

+ 1
αm

= 1. The exponents pαj , pαk , pαm must be no greater than the expo-

nents arising from the Sobolev embeddings. We note that Dru ∈ WM−r,2 (recall p ≥ 2), thus
Dru ∈ LpM,r , where pM,r = pn

n−p(M−r)
. It sufficient to check that 1

pN,j
+ 1

pN,k
+ 1

pN,l
≤ 1

p
. A

direct calculation shows that this is the case. Moreover, combining the inequalities above for
all j, k,m such that j + k + m ≤ M we conclude that (2.19) holds for any M .

Having (2.19) at our disposal we conclude that

‖Al+1/2
p u(t)‖Lp ≤ Ce−λt‖u0‖l+1/2,p +

∫ t

0
C2,pe−λ(t−s)Cl(p,E(u0),‖u0‖W2l,p ). (2.20)

In the next step we apply Al+1
p to both sides of (2.10); proceeding as above we arrive at the

estimate

‖Al+1
p u(t)‖Lp ≤ Ce−λt‖u0‖l+1,p

+
∫ t

0
‖A1/2

p e−Ap(t−s)Al+1/2
p (f (·, u(s)) + K(γu(s) − b))‖Lp ds.

At this point we recall that the norms ‖ · ‖1/2,p and ‖ · ‖W1,p are equivalent. An application
of (2.19) and (2.20) yields the desired result (2.18).
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The bound (2.18) and the method used above imply that the following estimate hold

sup
t∈[0,T ]

‖AN+1/2
p u(t)‖Lp ≤ sup

t∈[0,T ]
C‖∇AN

p u(t)‖Lp ≤ C

(
p,n,N + 1

2
,E(u0),‖u0‖WN,p

)
.

(2.21)
�

This fact yields a global in time solution.

Theorem 2.1 Let us suppose that � and f are as in Proposition 2.1. In addition we assume
that F is positive and u0 ∈ ⋂∞

k=1 D(Ak
p), where p > n is arbitrary. Then, the solution con-

structed in Proposition 2.1 is global in time. Moreover, ‖u(t)‖W2N,p ≤ MN , for any N > 1,
for all t > 0, where MN is independent of time.

Proof By the preceding lemmas we deduce that ‖u‖
X

2N,p
T

stays bounded independently of T ,

sup
t∈(0,T )

‖u(t)‖W2N,p ≤ C(p,n,N,E(u0),‖u0‖W2N,p ).

This fact, (2.21) and the method used to establish [12, Theorem 3.3.4] imply that the limit

lim
t→T − u(t)

exists in W 2N,p(�). Thus, we may extend the solution to a maximal interval of existence
[0, T∞). But the above bound which is uniform in time implies that T∞ = ∞. �

3 Asymptotic Behavior

In order to establish the existence of the ω-limit set, we first show the precompactness of the
orbit. First we notice that the ω-limit set may only consist of steady states, because of the
fact that (2.1) is a gradient system, see (2.9).

Proposition 3.1 Let us suppose that the assumptions of Theorem 2.1 hold. Then, for any
natural number N ≥ 1, the set ω(u0) is compact in H 2N(�) and connected; moreover it
only consists of the stationary points of (2.1) and E is constant on ω(u0).

Proof We have already shown that the set {u(t) : t ∈ [0,∞)} is bounded in W 2N+2,p(�).
The existence of a compact in H 2N(�) connected omega-limit set follows from the fact
that p ≥ 2. Connectedness of ω(u0) follows immediately from the definition of this set, see
[12, Theorem 4.3.3]. Since (2.1) is a gradient system, and E is its Lyapunov function, this
implies that only stationary points may belong to ω(u0). We can also infer from the fact that
E decreases along the trajectories that E must be constant on ω(u0). �

We are now ready to state the main result of this paper.

Theorem 3.1 Let us suppose that � is a bounded region of R
n with smooth boundary, and

that f satisfies the assumption of Proposition 2.1. We also assume that the initial datum
u0 of (2.1) belongs to

⋂∞
k=1 D(Ak

p) (hence it is smooth). Then, the unique solution to (2.1)
converges to a stationary state in HN(�), for all N ∈ N, N ≥ 1, as time goes to infinity.
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Our method of proof is based on the Łojasiewicz inequality and on the results presented
by Chill [3]; more specifically we will use [3, Theorem 2]. First, we recall the setting used in
[3]. Namely, we suppose that V and H are two Hilbert spaces, such that V is continuously
and densely embedded into H . We denote by H ∗ the dual space of H . Let the functional
E : V → R be twice continuously differentiable, E ∈ C2(V ) and denote by L the second
derivative E′′. Further, let ϕ ∈ V be a critical point of E, so that E′(ϕ) = 0. If P : H → H

is the orthogonal projection onto kerL(ϕ), then one can define the critical manifold S,

S = {u ∈ V : (I − P )E′(u) = 0}.
We recall.

Lemma 3.1 [3, Lemma 1] We assume that E ∈ C2(V ), ϕ ∈ V is a critical point of E and
E′′(ϕ) = L(ϕ) is a Fredholm operator, i.e. the kernel and the orthogonal complement of the
image of E′′ are finite dimensional spaces. Then, the set S is, locally near ϕ, a differentiable
manifold such that

dimS = dim kerL(ϕ).

If E ∈ Ck(V ), k ≥ 2, then S is a Ck−1-manifold. If E is analytic, then S is analytic.

The main result of [3] is the following.

Proposition 3.2 [3, Theorem 2] Let us suppose that the assumptions of the above Lemma
hold. In addition we assume that E|S satisfies the Łojasiewicz inequality near ϕ, namely
that there exist a neighborhood U ⊂ V of ϕ and a constant θ ∈ (0, 1

2 ], such that

|E(u) − E(ϕ)|1−θ ≤ C‖E′(u)‖V ∗ , for every u ∈ U ∩ S.

Then E itself satisfies the Łojasiewicz inequality in an open set W of V containing ϕ, with
the same Łojasiewicz exponent θ .

We will make a suitable choice of H and V and prove that the hypotheses of this propo-
sition are satisfied. This will be done in the course of the proof of our main result.

Proof of Theorem 3.1 Let us suppose that N is arbitrary but larger than n/2, so that HN(�)

is continuously embedded into C(�̄). We noticed in Proposition 3.1 that ω(u0) only consists
of stationary points of (2.1) and that there exists a constant e such that

E(u) = e, for all u ∈ ω(u0). (3.1)

We have to check that the assumptions of Proposition 3.2 are satisfied. We choose H =
L2(�) and V = HN(�). Since L(ϕ) corresponds to the linearization of (2.1), it is a Fred-
holm operator. Indeed, L(ϕ) is a sum of the Laplace operator on domain D(A2), which
makes it a self-adjoint operator, and a bounded linear self-adjoint operator on L2(�). It fol-
lows that L is self-adjoint too, hence its kernel and co-kernel coincide. Moreover, L(ϕ) is
a strongly elliptic operator and the boundary of � is smooth, so its kernel is finite dimen-
sional, because in such a case all the eigenspaces are finite dimensional. The analyticity of
the functional E, defined by (2.5), follows from the fact that f is a polynomial in u. Hence,
the critical manifold S is analytic due to Lemma 3.1. As a result Łojasiewicz inequality
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holds for E restricted to S (see [13, 15, Sect. IV.9]) and due to Proposition 3.2 it is true also
in V , i.e. if ϕ is a critical point of E then there exist β > 0 and θ ∈ (0,1/2) such that

|E(u) − E(ϕ)|1−θ ≤ C‖E′(u)‖(HN )∗ , for ‖u − ϕ‖HN ≤ β.

However, since (1.1) is a gradient flow in the L2 norm we have to obtain an upper bound
on ‖E′(u)‖(HN )∗ in terms of ‖E′(u)‖L2 . Indeed, by the definition of the norm in the adjoint
space, we have

‖E′(u)‖(HN )∗ = sup
ϕ∈HN

〈E′(u),ϕ〉
‖ϕ‖HN

= sup
ϕ∈HN

1

‖ϕ‖HN

(∫
�

(∇u∇ϕ − f (x,u)ϕ)dx + γ (Ku,ϕ)L2 − (Kb,ϕ)L2

)
.

Now, integration by part and the Cauchy inequality yield,

‖E′(u)‖(HN )∗ ≤ sup
ϕ∈HN

1

‖ϕ‖HN

(‖ − �u − f (x,u) + γKu − Kb‖L2‖ϕ‖L2).

Finally, we obtain,

|E(u) − E(ϕ)|1−θ ≤ C0‖E′(u)‖L2 , for ‖u − ϕ‖HN ≤ β, (3.2)

where e is defined by (3.1).
In view of the compactness of ω(u0) in HN there exists U a neighborhood of ω(u0),

composed of a finite number of balls Bj , j = 1, . . . ,Nω(u0). In each of the balls Bj in-
equality (3.2) holds with an exponent θj and a constant Cj . We take a common exponent
θ̄ = min{θj : j = 1, . . . ,Nω(u0)} and a common constant C = max{Cj : j = 1, . . . ,Nω(u0)}
so that we have

|E(u) − e|1−θ̄ ≤ C̄‖E′(u)‖L2 , for u ∈ U . (3.3)

Moreover, since the distance from u(t) to the ω-limit set converges to zero (see [11,
Sect. 3.1], [12, Theorem 4.3.3]), we deduce that there exists a positive constant T such
that for all t > T , u(t) ∈ U . Hence, by (2.8)

− d

dt
|E(u) − e|θ̄ = −θ̄ |E(u) − e|θ̄−1〈E′(u),ut 〉 = θ̄ |E(u) − e|θ̄−1‖E′(u)‖L2‖ut‖L2 .

Now, the application of (3.3) yields the integrability of ‖ut‖L2 ,

− d

dt
|E(u) − e|θ̄ ≥ θ̄

C̄
‖ut‖L2 .

Hence, u(t) satisfies the Cauchy condition, i.e. for any ε > 0, there is tε > 0 so that for all
t1 > t2 > tε we have

‖u(t1) − u(t2)‖L2 ≤
∫ t1

t2

‖ut (s)‖L2 ≤ C̄

θ̄
(|E(u(t2)) − e|θ̄ − |E(u(t1)) − e|θ̄ ) < ε. (3.4)

In the first inequality above we used the formula u(t1)−u(t2) = ∫ t1
t2

ut (s) ds and the triangle
inequality.
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Since E(u(t)) is bounded below and decreases along the orbit, it follows that E(u(t))

converges to e as t goes to infinity. Therefore, the right-hand-side of (3.4) can be made
arbitrarily small by taking t1 and t2 large enough. Hence, u(t) is a Cauchy sequence, thus it
converges in L2 to a stationary solution as t → ∞ and the convergence takes place in the
HN -topology, with N > n/2 arbitrary. �

Remark 3.1 It is known that if the solution converges to an isolated stationary point, then
the rate of convergence is exponential, see e.g. [3].

The result proven in Theorem 3.1 also extends to f (x,u) being a polynomial in u of
odd degree with smooth coefficients, such that the coefficient of highest degree monomial is
strictly negative, namely

f (x,u) =
2q−1∑
l=1

al(x)ul,

where al ∈ C∞(�̄), and a2q−1 ≤ −δ < 0. This is indeed so, since the proof of the key es-
timate in Lemma 2.1 extends to this case (cf. [2, Lemma 3.3]). The details are left to the
reader.
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5. Feireisl, E., Takàč, P.: Long-time stabilization of solutions to the Ginzburg-Landau equations of super-
conductivity. Monatsh. Math. 133, 197–221 (2001)

6. Feireisl, E., Issard-Roch, F., Petzeltova, H.: A non-smooth version of the Lojasiewicz-Simon theorem
with applications to non-local phase-field systems. J. Differ. Equ. 199, 1–21 (2004)

7. Feireisl, E., Schimperna, G.: Large time behavior of solutions to Penrose-Fife phase change models.
Math. Methods Appl. Sci. 28, 2117–2132 (2005)

8. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Bio-
logical Engineering, pp. 1–85. McGraw-Hill, New York (1969), Chap. 1

9. Garel, T., Doniach, S.: Phase transitions with spontaneous modulation—the dipolar Ising ferromagnet.
Phys. Rev. B 26, 325–329 (1982)

10. Grinfeld, M., Novick-Cohen, A.: Counting stationary solutions of the Cahn-Hilliard equation by
transversality argument. Proc. R. Soc. Edinb. Sect. A 125, 351–370 (1995)

11. Hale, J.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence
(1988)

12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)
13. Łojasiewicz, S.: Ensemble Semi-Analytic. I.H.E.S., Bures-sur-Yvette (1965)
14. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques reéls. In: Colloque Interna-

tionaux du C.N.R.S. No. 117: Les equations aux derivées partielles, pp. 87–89 (1963)



304 D. Hilhorst, P. Rybka

15. Łojasiewicz, S.: Sur la geometrie semi- et sous-analytique. Ann. Inst. Fourier (Grenoble) 43, 1575–1595
(1993)

16. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc.
IRE 50, 2061–2070 (1962)

17. Nishiura, Y., Ohnishi, I.: Some mathematical aspects of the micro-phase separation in diblock copoly-
mers. Physica D 84, 31–39 (1995)

18. Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621–
2632 (1986)

19. Rybka, P., Hoffmann, K.-H.: Convergence of solutions to Cahn-Hilliard equation. Commun. PDE 24,
1055–1077 (1999)

20. Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to geometric
problems. Ann. Math. 118, 525–571 (1983)

21. Shoji, H., Yamada, K., Ohta, T.: Interconnected Turing patterns in three dimensions. Phys. Rev. E 72,
065202 (2005)

22. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amster-
dam/New York (1978)


	Stabilization of Solutions to a FitzHugh-Nagumo Type System
	Abstract
	Introduction
	Existence
	Asymptotic Behavior
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


